
Table 1

Addressing mode Implicit Accumulator Immediate Zero Page 
Absolute

Zero Page,X Zero Page,Y Relative Absolute Absolute,X Absolute,Y Indirect Indexed Indirect Indirect Indexed Notes

Parameters - A #$nn $nn $nn,x $nn,y $nn (signed) $nnnn $nnnn,x $nnnn,y ($nnnn) ($nn,x) ($nn),y

Implied by 
operator

Acts on 
accumulator

literal value value at $nn value at ($nn+x) value at ($nn+y) PC = PC+$nn value at $nnnn value at ($nnnn+x) value at 
($nnnnn+y)

value of (value at 
$nnnn)

value of (value at 
($nnnn+x))

value of ((value at 
$nnnn) + y)

ADC Add with Carry x x x x x x x x On numerical values 

nn = decimal

$nn = hexadecimal


The assembler converts for you.


Signed vs unsigned 
Usually values are interpreted as unsigned. We mostly use signed values for relative jumps, and 
we let the assembler worry about the values.


Addressing modes 

Implicit 
No parameters; the instruction implies on what value to act (if any).

Examples: INX (operates on X), RTS (operates on PC)


Accumulator 
Use A as parameter to act on A.

Examples: LSR A (left shifts A), LSR $00 (left shift value at $00)


Zero Page 
Single byte parameter of zero page memory address.

Example: LDA $00 (load memory value at $00 into A)


Zero Page,X 
Single byte parameter of zero page memory address, X will be added to it.

Example: LDX #$a0, LDA $10,X (load memory value at $b0 into A)

Note: Wraps around, so if X = $f0, LDA $10,X will not load $0100 but $00.


Zero Page,Y 
Same as Zero Page,X but with Y.


Relative 
Single byte parameter, interpreted as signed. Only used by branch instructions, which add the 
value to the PC (if the condition is matched).

You'll generally use labels, and let the assembler worry about the actual value.

Note: this means you cannot branch farther than -128 - +127 bytes. If you need this, branch to a 
closer position after which you'll JMP to where you need to go.


Absolute 
Two byte parameter of a memory address in the full 65k range.

Examples: JMP $abcd (set PC to $abcd), LDA $1234 (load value at $1234 into A)


Absolute,X 
Two byte parameter of a memory address in the full 65k range, X will be added to it.

Example: LDX #$04, LDA $1230,X (load memory value $1234 into A)

Note: does not wrap around, unlike Zero Page,X/Y (although mabye around $ffff?)


Absolute,Y 
Same as Absolute,X but with Y.


Indirect 
Only used by JMP.

Two byte parameter of a memory address which contains the low byte a 16 bit value; the next 
byte should contain the high byte.

Example: LDA #$cd, STA $f000, LDA #$ab, STA $f001, JMP ($f000) (set PC to $abcd; the 
contents of $f001 $f000 respectively)


Indexed Indirect 
Single byte parameter of a zero page address. The value of X will be added to the address, 
which then should contain the low byte of a 16 bit value; the next byte should contain the high 
byte. This is useful for an address table.

Example:

Assume the following bytes at $00: $cd $ab $34 $12

LDX #$00, LDA ($00,X) (loads the value at address $abcd into A)

LDX #$02, LDA ($00,X) (loads the value at address $1234 into A)

Note: This wraps around like Zero Page,X.


Indirect Indexed 
Single byte parameter of a zero page address containing the low byte of a 16 bit value; the next 
byte should contain the high byte. The value of Y will be added to the resulting address. This is 
useful fo point at a struct in memory.

Example:

Assume the following bytes at $00: $30 $12

LDY #$00, LDA ($00),Y (loads the value at address $1230 into A)

LDY #$04, LDA ($00),Y (loads the value at address $1234 into A)


Processor Status / Flags 

Carry - Set if last operation caused overflow from bit 7 or underflow from bit 0.

Zero - Set if the result of the last operation was 0.

Interrupt disable - If set processor will not respond to interrupts

Decimal mode - If set ADC and SBC will use binary coded decimal arithmetic (eg 9+1=10, 
instead of $9 + $1 = $a).

Break - Set if BRK has been executed and an interrupt has been generated to process it.

Overflow - Set during arithmetic operation if the result has yielded an invalid 2's complement 
result (e.g. adding to positive numbers and ending up with a negative result: 64 + 64 => -128). It 
is determined by looking at the carry between bits 6 and 7 and between bit 7 and the carry flag.

Negative - Set if the result of the last operation had bit 7 set to 1.

AND Logical AND x x x x x x x x
ASL Arithmetic Shift Left x x x x x

BCC Branch if Carry Clear (C=0) x

BCS Branch if Carry Set (C=1) x

BEQ Branch if Equal (Z = 1) x

BIT Bit test x x

BMI Branch if Minus (N=1) x
BNE Branch if Not Equal (Z=0) x

BPL Branch if Positive (N=0) x

BRK Break x

BVC Branch if oVerflow is Clear (O=0) x

BVS Branch if oVerflow is Set (O=1) x
CLC Clear Carry x

CLD Clear Decimal x

CLI Clear Interrupt mask x

CLV Clear Overflow flag x

CMP Compare A to value x x x x x x x x

CPX Compare X to value x x x
CPY Compare Y to value x x x

DEC Decrement value x x x x

DEX Decrement X x

DEY Decrement Y x

EOR Logical XOR x x x x x x x x

INC Increment x x x x x x x
INX Increment X x

INY Increment Y x

JMP Jump to location x x

JSR Jump to subroutine x

LDA Load into A x x x x x x x x

LDX Load into X x x x x x
LDY Load into Y x x x x x

LSR Logical Shift Right x x x x x

NOP No Operation x

ORA Logical OR x x x x x x x x

PHA Push A x
PHP Push Processor (Flags) x
PLA Pull A x

PLP Pull Processor (Flags) x

ROL Rotate Left x x x x x

ROR Rotate Right x x x x x

RTI Return from Interrupt x
RTS Return from Subroutine x

SBC Subtract (with carry) x x x x x x x

SEC Set Carry x

SED Set Decimal x

SEI Set Interrupt Mask (disable interrupts) x

STA Store A x x x x x x x
STX Store X x x x

STY Store Y x x x

TAX Transfer A to X x

TAY Transfer A to Y x

TSX Transfer SP to X x

TXA Transfer X to A x
TXS Transfer X to SP x

TYA Transfer Y to A x

�1



Memory layout 

Zero page 
The zero page is is the first page of memory, so 
$0000 - $00ff. There are special addressing 
modes which use this page. These are generally 1 
clock cycle faster than the instructions which access 
the higher pages in memory so they are a good place 
for variables you need often.


On our "machine"

• $fe contains a new random byte on every 

instruction

• $ff contains the ascii code of the last key pressed


Stack 
The stack lives in the second page of memory ($0100 
- $01ff) and cannot be moved. Some clones differ, 
or can move the origin.

The SP starts at $01ff and decrements when you 
push values onto the stack. Pulling (popping) values 
of the stack will not clear them.

If you JSR, it will push the high byte of the PC to the 
address at SP (so $01ff at the start), and the low 
byte to SP-1 ($01fe). SP will be decremented to 
$01fd.

When you RTS, it will read back the PC to use from 
SP+1 and SP+2 (and increment the SP). So you better 
make sure you pull all values from the stack you 
pushed onto in in your subroutine!


Display (specific to our "machine") 
The next four pages ($0200-$05ff) are reserved for 
the display; every pixel is a byte (although only 4 bits 
are used). 32 x 32 pixels.

Each page is 256 pixels, so 256/32 = 8 rows.

Fun: we’ll need 16 bit arithmetic for this!

Colors
$0 Black $1 White $2 Red $3 Cyan

$4 Purple $5 Green $6 Blue $7 Yellow

$8 Orange $9 Brown $a L red $b D gray

$c Gray $d L green $e L blue $f L grey

Addition 

ADC - Add with carry


We can only add with carry (which admittedly is better 
than only without), so, carry will always be included.


CLC      ; clear carry 
LDA #$a0 ; load $a0 into A 
ADC #$10 ; add $10 to A 
         ; A will be $b0 
         ; do not clear carry 
ADC #$80 ; add $80 to A 
         ; A will be $30 
         ; Carry will be set 

We can use this for multiple byte addition

For example 16 byte value at $00-$01


LDA $00  ; assumed 0 
CLC 
ADC #$90 ; A = $90 
ADC #$90 ; A = $20, carry is set 
STA $00  ; store low byte 
LDA $01  ; load high byte 
ADC #$00 ; Add carry to A !" A = $01 
STA $01  ; store high byte 

Subtraction 

SBC - Subtract with Carry


Subtracts including the NOT of the Carry (so in all 
ways the opposite of ADC). So you need to SET the 
carry before subtracting.


LDA #$10 
SEC 
SBC #$20 ; A = $f0; carry UNSET 
SBC #$00 ; A = $ef 

Signed values 

They’re fun, ask me later. We don’t need them today.

Other assembler commands 

Labels 

A label creates a constant with the same name, the 
value is the address of the next instruction.


  LDX #$0f 
loop: 
  DEX 
  BNE loop ; if Z = 0 branch 

Define 

You can use define to define a constant value. You 
can use this as at any place where you need a 
numerical value. Same as a label but you get to define 
the value.


define x $10

LDA x ; load value from $10 into A

LDA #x ; load $10 into A


EQU/ORG 

Tell the assembler where to continue to put 
assembled bytes into memory.

By default we start at $0600 (just after the display 
memory), but we can use this to move stuff around on 
our terms.


  JMP $06a0

*=$06a0

  LDA #$10


DCB 

Put out raw bytes


*=$0000 
dcb $0, $1, $2, $3, $4, $5, $6, $7 
dcb $8, $9, $a, $b, $c, $d, $e, $f 

Note: this will be reset when you hit “reset” :(.


